精英家教网 > 高中数学 > 题目详情
已知函数g(x)=kx+b(k≠0),当x∈[-1,1]时,g(x)的最大值比最小值大2,又f(x)=2x+3.是否存在常数k,b使得f[g(x)]=g[f(x)]对任意的x恒成立,如果存在,求出k,b.如果不存在,说明为什么?
①当k>0时:g(x)在区间[-1,1]上,
g(x)max=g(1)=k+b;
g(x)min=g(-1)=-k+b
∴k+b-(-k+b)=2即:k=1
②当k<0时:g(x)在区间[-1,1]上,
g(x)max=g(-1)=-k+b;
g(x)min=g(1)=k+b
∴-k+b-(k+b)=2即:k=-1
假设存在k,b使得f[g(x)]=g[f(x)]对任意的x恒成立;
当k=1时,f[g(x)]
=f(x+b)=2(x+b)+3
=2x+2b+3=g[f(x)]
=g(2x+3)
=2x+3+b
∴2x+2b+3=2x+b+3即:b=0
同理:当k=-1时,b=-6
∴存在
k=1
b=0
k=-1
b=-6
时,使得f[g(x)]=g[f(x)]对任意的x恒成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bsinx-2,(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x-5)=F(5-x).
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-
12
f(x)-k
有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bsinx-2(b∈R),F(x)=f(a)+2且对于任意实数x,恒有F(x)-F(-x)=0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a的取值范围;
(Ⅲ)若关于x的方程
12
f(x)=4lnx-k
在[1,e]上恰有两个相异实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a、b的值;
(Ⅱ)若不等式f(x)-kx≥0在x∈(0,+∞)时恒成立,求实数k的取值范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海口模拟)已知函数f(x)=x2+bsinx-2(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x)-F(-x)=0.
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调递减,求实数a的取值范围;
(3)函数h(x)=ln(1+x2)-
12
f(x)-k,(k∈R),试判断函数h(x)的零点个数?

查看答案和解析>>

同步练习册答案