精英家教网 > 高中数学 > 题目详情
精英家教网已知椭圆C:
x2
2
+y2=1
的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.
分析:(Ⅰ)根据椭圆方程求得焦点,顶点的坐标,设出点P的坐标,进而表示出|PF2|的长度进而根据圆M的面积求得x1,求得P的坐标,则PA所在的直线方程可得.
(Ⅱ)根据点M到直线AF1的距离求得x1和y1的关系式,进而与椭圆方程联立求得x1,进而求得M的坐标则圆的方程可得.
(Ⅲ)首先表示出OM的长度,以及圆M的半径,进而求得OM=r1-r2,推断出⊙M和以原点为圆心,半径为r1=
2
(长半轴)的圆相内切.
解答:解:(Ⅰ)易得F1(-1,0),F2(1,0),A(0,-1),设点P(x1,y1),
PF22=(x1-1)2+y12=(x1-1)2+1-
x12
2
=
1
2
(x1-2)2

所以PF2=
2
-
2
2
x1

又⊙M的面积为
π
8
,∴
π
8
=
π
8
(x1-2)2

解得x1=1,∴P(1,
2
2
)或(1,-
2
2
)

∴PA所在直线方程为y=(1+
2
2
)x-1
y=(1-
2
2
)x-1

(Ⅱ)因为直线AF1的方程为x+y+1=0,且M(
x1+1
2
y1
2
)
到直线AF1的距离为
|
x1+1
2
+
y1
2
+1|
2
=
2
2
-
2
4
x1

化简得y1=-1-2x1,联立方程组
y1=-1-2x1
x12
2
+y12=1

解得x1=0或x1=-
8
9

∴当x1=0时,可得M(
1
2
,-
1
2
)

∴⊙M的方程为(x-
1
2
)2+(y+
1
2
)2=
1
2

x1=-
8
9
时,可得M(
1
18
7
18
)

∴⊙M的方程为(x-
1
18
)2+(y-
7
18
)2=
169
162

(Ⅲ)⊙M始终和以原点为圆心,半径为r1=
2
(长半轴)的圆(记作⊙O)相切
证明:因为OM=
(x1+1)2
4
+
y12
4

=
(x1+1)2
4
+
1
4
-
x12
8
=
2
2
+
2
4
x1

又⊙M的半径r2=MF2=
2
2
-
2
4
x1

∴OM=r1-r2,∴⊙M和⊙O相内切.
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
2
+y2=1
的两焦点为F1,F2,点P(x0,y0)满足0<
x
2
0
2
+
y
2
0
<1
,则|PF1|+PF2|的取值范围为
 
,直线
x0x
2
+y0y=1
与椭圆C的公共点个数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
2
+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若
FA
=3
FB
,则|
AF
|=(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
2
+y2=1的右焦点为F,直线l:x=2,点A∈l,线段AF交C于点B,若
FA
=3
FB
,则|
AF
|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)已知椭圆C:
x2
2
+y2=1
的左右焦点分别为F1、F2,下顶点为A,点P是椭圆上任意一点,圆M是以PF2为直径的圆.
(I)当圆M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当圆M与直线AF1相切时,求圆M的方程.

查看答案和解析>>

同步练习册答案