精英家教网 > 高中数学 > 题目详情
各项均为正数的等比数列{an}中,已知a1=2,a5=512,Tn是数列{log2an}的前n项和.
(I)求数列{an}的通项公式;
(Ⅱ)求Tn
(Ⅲ)求满足的最大正整数n的值.
【答案】分析:(I)利用等比数列的通项公式,求出公比,写出通项公式即可;
(II)先求数列{bn}的通项公式,证明其为等差数列,再利用等差数列的前n项和公式计算Sn即可;
(III)利用(II)的结论,可得,即可得出结论.
解答:解:(1)设公比为q,依题意,2×q4=512
∵数列{an}是各项均为正数的等比数列,
∴q=4
∴∴an=2×4n-1=22n-1
(II)由(I)得bn=log2an=log2(22n-1)=2n-1
∴数列{bn}为首项为1,公差为2的等差数列
∴Tn==n2
(III)===


∴满足的最大正整数n的值为223.
点评:本题考查了等比数列和等差数列的定义及其通项公式的运用,等差数列的前n项和公式及其运用,考查数列与不等式的结合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:云南省昆明市东川高级中学2009-2010学年高二数学上期期中质量检测试题 题型:013

各项均为正数的等比数例{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于

[  ]
A.

16

B.

26

C.

30

D.

80

查看答案和解析>>

科目:高中数学 来源: 题型:

5.各项均为正数的等比数例{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于(  )

(A)16                      (B)26                              (C)30                      (D )80

查看答案和解析>>

同步练习册答案