精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D为BC中点,点E为BD中点,点F在AC1上,且AC1=4AF.
(1)求证:平面ADF⊥平面BCC1B1
(2)求证:EF∥平面ABB1A1

证明:(1)因为直三棱柱ABC-A1B1C1,所以CC1⊥平面ABC,
而AD?平面ABC,所以CC1⊥AD.…(2分)
又AB=AC,D为BC中点,所以AD⊥BC,
因为BC∩CC1=C,BC?平面BCC1B1,CC1?平面BCC1B1
所以AD⊥平面BCC1B1,…(5分)
因为AD?平面ADF,
所以平面ADF⊥平面BCC1B1.…(7分)
(2)连结CF延长交AA1于点G,连结GB.
因为AC1=4AF,AA1∥CC1,所以CF=3FG,
又因为D为BC中点,点E为BD中点,所以CE=3EB,
所以EF∥GB,…(11分)
而EF?平面ABBA1,GB?平面ABBA1
所以EF∥平面ABBA1.…(14分)
分析:(1)欲证平面ADF⊥平面BCC1B1,可先证AD⊥平面BCC1B1,CD⊥AB,因AB=AC,D为BC中点,所以AD⊥BC,故只须证CC1⊥AD,这个可以根据直三棱柱ABC-A1B1C1中CC1⊥平面ABC得到;
(2)欲证EF∥平面ABB1A1,根据直线与平面平行的判定定理可知只需证EF与平面ABB1A1内一直线平行,连结CF延长交AA1于点G,连结GB.根据中点条件及AC1=4AF可知EF∥GB,又EF?平面ABBA1,GB?平面ABBA1,满足定理所需条件,从而得出答案.
点评:本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案