精英家教网 > 高中数学 > 题目详情
已知x=1是函数的一个极值点,
(Ⅰ)求a的值;
(Ⅱ)当时,证明:
(Ⅰ);(Ⅱ)详见解析.

试题分析:(Ⅰ)先求出导函数,再由即可得到;(Ⅱ) 当时,要证明.即证明当时,.然后研究函数在区间[0,2]上的单调性以求出最值.从而证明了本题.
试题解析:(Ⅰ) ,,又
时,,在处取得极小值.
(Ⅱ)证明:由(Ⅰ)知,.
时,,所以在区间[0,1]单调递减;
时,,所以在区间[0,1]单调递增;
所以在区间[0,2]上,的最小值为,又.
所以在区间[0,2]上,的最大值为.
对于时,有.
所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在实数集R上定义运算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是减函数,求实数a的取值范围;
(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,函数处有极小值,求函数的单调递增区间;
(2)若函数有相同的极大值,且函数在区间上的最大值为,求实数的值(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数:
(1)讨论函数的单调性;
(2)若对于任意的,若函数在 区间上有最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.

查看答案和解析>>

同步练习册答案