精英家教网 > 高中数学 > 题目详情
设各项为正数的等比数列{an}的前n项和为Sn,S4=1,S8=17.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在最小正整数m,使得当n>m时,an
201115
恒成立?若存在,求出m;若不存在,请说明理由.
分析:(Ⅰ)由S4=1,S8=17,得到公比q不等于1,所以根据等比数列的前n项和公式化简两等式,得到关于首项和公比的两方程,两方程相除即可消去首项,求出公比的值,把公比的值代入其中一个方程即可求出首项的值,由首项和公比的值写出数列的通项公式即可;
(Ⅱ)把(Ⅰ)中求出的通项公式代入an
2011
15
中,化简后根据2011的范围把2011夹在2的11次方和2的12次方之间,即可求出不存在n的最小正整数解,使n大于此时的最小正整数时不等式恒成立.
解答:解:(Ⅰ)设数列{an}的公比为q,由S4=1,S8=17知q≠1,
a1(1-q4)
1-q
=1,
a1(1-q8)
1-q
=17,相除得:
1-q8
1-q4
=17,解得q4=16,所以q=2或q=-2(舍去),
将q=2代入得a1=
1
15
,则数列{an}的通项公式为an=
2n-1
15

(Ⅱ)由an=
2n-1
15
2011
15
,得2n-1<2011,
而210<2011<211,所以n-1≤10,即n≤11,
因此,不存在最小的正整数,使得n≥m时,an
2011
15
恒成立.
点评:此题考查学生灵活运用等比数列的前n项和公式及通项公式化简求值,掌握不等式恒成立时满足的条件,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年惠州一中五模理)    设各项为正数的等比数列的首项,前n项和为,且

(Ⅰ)求的通项;

(Ⅱ)求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项为正数的等比数列{an}的前n项和为Sn,S4=1,S8=17.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在最小正整数m,使得当n>m时,数学公式恒成立?若存在,求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:西安模拟 题型:解答题

设各项为正数的等比数列{an}的前n项和为Sn,S4=1,S8=17.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在最小正整数m,使得当n>m时,an
2011
15
恒成立?若存在,求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年陕西省西安市八校高三联考数学试卷3(文科)(解析版) 题型:解答题

设各项为正数的等比数列{an}的前n项和为Sn,S4=1,S8=17.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在最小正整数m,使得当n>m时,恒成立?若存在,求出m;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案