精英家教网 > 高中数学 > 题目详情
(2012•湖南模拟)设函数f(x)=lnx-
12
ax2-bx.
(1)当a+b=1时,试用含a的表达式研究f(x)的单调区间;
(2)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
分析:(1)将b=a-1代入f′(x)=
1
x
-ax+b,得f′(x)=
1
x
-ax+a-1.当f′(x)>0时,-
(ax+1)(x-1)
x
>0,由x>0,得(ax+1)(x-1)<0,由此对a讨论后能求出f(x)的单调区间;
(2)方程2mf(x)=x2有唯一实数解,即x2-2mlnx-2mx=0有唯一实数解,设g(x)=x2-2mlnx-2mx,通过导数法求得g(x)的最小值g(
m+
m2+4m
2
),最后由
g′(x2)=0
g(x2) =0
得到
m+
m2+4m
2
=1,从而可求得m.
解答:解:(1)∵a+b=1,故b=1-a,
∴f′(x)=
1
x
-ax+a-1,…1′
当f′(x)>0时,-
(ax+1)(x-1)
x
>0,∵x>0,
∴(ax+1)(x-1)<0,…2′
若a≥0,有0<x<1,即f(x)在(0,1)上单调递增;…3′
若-1<a<0,增区间(-
1
a
,+∞),(0,1),减区间(1,-
1
a
)…4′
若a=-1,增区间(0,+∞)…5′
若a<-1,增区间(0,-
1
a
),(1,+∞),减区间(-
1
a
,1)…6′
(2)∵方程2mf(x)=x2有唯一实数解,
∴x2-2mlnx-2mx=0有唯一实数解,
设g(x)=x2-2mlnx-2mx,
则g′(x)=
2x2-2mx-2m
x
,令g′(x)=0,即x2-mx-m=0,
∵m>0,x>0,
∴x1=
m-
m2+4m
2
(舍去),
x2=
m+
m2+4m
2
…8′
当x∈(0,x2),g′(x)<0,g(x)在(0,x2)上单调递减,
当x∈(x2,+∞),g′(x)>0,g(x)在(x2,+∞)上单调递增,
当x=x2时,g′(x)=0,g(x)取最小值g(x2)…10′
g′(x2)=0
g(x2) =0
x22-2mlnx2-2mx2=0
x22-m x2-m=0

∴2mlnx2+mx2-m=0,因为m>0,
∴2lnx2+x2-1=0(*),
设函数h(x)=2lnx2+x2-1,因为当x>0时,h(x)是增函数,
∴h(x)=0至多有一解,因为h(1)=0,
∴方程(*)的解为:x2=1…12′
m+
m2+4m
2
=1,解得m=
1
2
…13′
点评:本题考查利用导数研究函数的单调性,考查运算求解能力,考查论证推理能力,综合性强,难度大,是高考的重点.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函数f(x)=
m
n

(1)求函数f(x)的对称中心;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上的f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若当实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

同步练习册答案