精英家教网 > 高中数学 > 题目详情
13.关于函数f(x)=tan(cosx),下列结论中正确的是(  )
A.定义域是[-1,1]B.f(x)是奇函数
C.值域是[-tan1,tan1]D.在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增

分析 运用正切函数的性质和余弦函数的性质,结合奇偶性的定义和复合函数的单调性,即可判断

解答 解:函数f(x)=tan(cosx),
由于-1≤cosx≤1,函数有意义,则定义域为R,则A错;
由于[-1,1]⊆(-$\frac{π}{2}$,$\frac{π}{2}$),
由正切函数的单调性,可得tan(-1)≤f(x)≤tan1,
即有值域为[-tan1,tan1],则C对;
由于定义域为R,则f(-x)=tan(cos(-x))=tan(cosx)=f(x),
即有f(x)为偶函数,则B错;
在(-$\frac{π}{2}$,0)上,y=cosx递增,则y=tan(cosx)递增;
则在(0,$\frac{π}{2}$)上单调递减.则D错.
故选C.

点评 本题考查正切函数和余弦函数的性质,考查复合函数的单调性:同增异减,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+kx(k∈R)
(1)当k=-2时,求函数f(x)的极值点;
(2)当k=0时,若f(x)+$\frac{b}{x}$-a≥0(a,b∈R)恒成立,试求ea-1-b+1的最大值;
(3)在(2)的条件下,当ea-1-b+1取最大值时,设F(b)=$\frac{a-1}{b}$-m(m∈R),并设函数F(x)有两个零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设复数z=(a2-1)+(a-1)i(i是虚数单位,a∈R),若z是纯虚数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.要在半径OA=90cm的圆形木板上截取一块扇形,使其弧$\widehat{AB}$的长为30πcm,则圆心角∠AOB=$\frac{π}{3}$(填弧度)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设正方体的所有棱长都为a,顶点都在一个球面上,则该球的表面积为(  )
A.πa2B.2πa2C.3πa2D.12πa2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,正确的命题个数是(  )
①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个非零常数后,期望改变,方差不变;
③某厂生产的零件外直径x~N(3,1),且p(2≤x≤4)=0.68,则p(x<4)=0.84
④用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的过程中,由n=k递推到n=k+1时不等式的左边增加项为$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图4,已知正三棱柱ABC-A1B1C1,延长BC至D,使C为BD的中点.
(1)求证:平面AC1D⊥平面AA1B;
(2)若AC=2,AA1=4,求二面角C1-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半径;
(Ⅱ)若E为⊙O上的一点,$\widehat{AE}=\widehat{AC}$,DE交AB于点F,求证:PF•PO=PA•PB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga$\frac{x+1}{x-1}$(a>0且a≠1).
(I) 求函数的定义域,并证明:f(x)=loga$\frac{x+1}{x-1}$(a>0且a≠1)在定义域上是奇函数;
(Ⅱ)对于x∈[2,4],loga$\frac{x+1}{x-1}$>loga$\frac{m}{(x-1)(7-x)}$恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案