| A. | 定义域是[-1,1] | B. | f(x)是奇函数 | ||
| C. | 值域是[-tan1,tan1] | D. | 在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增 |
分析 运用正切函数的性质和余弦函数的性质,结合奇偶性的定义和复合函数的单调性,即可判断
解答 解:函数f(x)=tan(cosx),
由于-1≤cosx≤1,函数有意义,则定义域为R,则A错;
由于[-1,1]⊆(-$\frac{π}{2}$,$\frac{π}{2}$),
由正切函数的单调性,可得tan(-1)≤f(x)≤tan1,
即有值域为[-tan1,tan1],则C对;
由于定义域为R,则f(-x)=tan(cos(-x))=tan(cosx)=f(x),
即有f(x)为偶函数,则B错;
在(-$\frac{π}{2}$,0)上,y=cosx递增,则y=tan(cosx)递增;
则在(0,$\frac{π}{2}$)上单调递减.则D错.
故选C.
点评 本题考查正切函数和余弦函数的性质,考查复合函数的单调性:同增异减,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com