精英家教网 > 高中数学 > 题目详情
(几何证明选做题)如图,∠PAQ是直角,半径为5的圆O与AP相切于点T,与AQ相交于两点B、C,BT是否平分∠OBA?证明你的结论;
证明:连接OT,
(1)∵AT是切线,
(2)∴OT⊥AP.
(3)又∵∠PAB是直角,即AQ⊥AP,
(4)∴AB∥OT,
(5)
(6)又∵OT=OB,
(7)∴∠OTB=∠OBT.
(8)∴∠OBT=∠TBA,即BT平分∠OBA.
以上证明的8个步骤中的(5)是
∴∠TBA=∠BTO
∴∠TBA=∠BTO
分析:由已知中的证明过程可知,本题是根据已知,结合切线的性质,平行线的性质,圆的性质,通过角相等证明角平分线,根据(4)的条件及(8)中结论,可得(5)一定是在说明∠TBA与∠BTO的关系,进而得到答案.
解答:解:根据(4)的条件AB∥OT
可知(5)的结论一定是由平行线性质得到一个角的关系
而(8)中结论中∠OBT=∠TBA,前面证明过程中及已知中并无∠BTO的等量关系
故可得(5)一定是在说明∠TBA与∠BTO的关系,
分析可得(5)中应填:∴∠TBA=∠BTO
故答案为:∴∠TBA=∠BTO
点评:本题又填空的形式,考查了逻辑推理,题型比较新颖,其中分析逻辑顺序及证明过程中各数据量之间的关系是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若关于x的不等式|x+1|+|x-2|≤a有解,则实数a的取值范围是
[3,+∞)
[3,+∞)

B.(几何证明选做题)如图所示,圆O是△ABC的外接圆,过C点的切线交AB的延长线于点D,CD=2
7
,AB=BC=3,则AC长
3
7
2
3
7
2

C.(坐标系与参数方程选做题)极坐标系下,直线ρcos(θ-
π
4
)=
2
与圆ρ=
2
的公共点个数是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)
A.(不等式选做题)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=
3
3
3
3

C.(坐标系与参数方程选做题)已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)(几何证明选做题)
如图,四边形ABCD中,∠A=∠B=90°,AD:AB:BC=3:4:6,E、F分别是AB、CD上的点,AE:AB=DF:DC=1:3.若四边形ABCD的周长为1,则四边形AEFD的周长为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
3
3
2
3
3

(C)(坐标系与参数方程选做题) 
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)若M,N分别是曲线ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的动点,则M,N两点间的距离的最小值是
2
-1
2
-1

B.(选修4-5 不等式选讲)若不等式|x+
1
x
|>|a-2|+1
对于一切非零实数x均成立,则实数a的取值范围为
1<a<3
1<a<3

C.(选修4-1 几何证明选讲)(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于
3
3

查看答案和解析>>

同步练习册答案