精英家教网 > 高中数学 > 题目详情
15.若函数f(x)=2sin(2x+φ)(-π<φ<0)图象的一个对称中心为($\frac{7π}{12}$,0).
(1)求φ的值;
(2)求函数f(x)的单调递减区间;
(3)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

分析 (1)由题意利用正弦函数的图象的对称性可得φ的值.
(2)由条件利用正弦函数的单调性求得函数f(x)的单调递减区间.
(3)由条件利用正弦函数的定义域和值域,求得函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

解答 解:(1)由于函数f(x)=2sin(2x+φ)(-π<φ<0)图象的一个对称中心为($\frac{7π}{12}$,0),
故有2•$\frac{7π}{12}$+φ=kπ,k∈π,求得φ=-$\frac{π}{6}$,∴f(x)=2sin(2x-$\frac{π}{6}$).
(2)对于函数f(x)=2sin(2x-$\frac{π}{6}$),令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,可得函数的减区间为[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
(3)∵x∈[-$\frac{π}{12}$,$\frac{π}{2}$],∴2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],∴sin(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
故函数的值域为[-$\sqrt{3}$,2]..

点评 本题主要考查正弦函数的图象的对称性,正弦函数的单调性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.东莞某商城欲在国庆期间对某新上市商品开展促销活动,经测算该商品的销售量a万件与促销费用x万元满足ax+20a=40x+755,已知a万件该商品的进价成本为100+30a万元,商品的销售价定为50+$\frac{300}{a}$元/件.
(1)将该商品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x3+ax2+bx+c,x∈[-3,3]的图象过原点,且在点(1,f(1))和点(-1,f(-1))处的切线斜率为-2,则f(x)=(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.是非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.两定点A、B之间的距离为8,动点P到A、B的距离之比为$\frac{3}{2}$,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足:$\left\{\begin{array}{l}{x+2y-5≤0}\\{2x+y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,则由不等式组确定的可行域的面积为$\frac{13}{4}$;记max{a,b}={$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,则z=max{3x+2y,x+3y}的最大值为$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是某建筑物的模型,现在要给该模型进行涂色,有红,黄,蓝,绿四种颜色可用,每层只能用一种颜色,在每一层涂色时,每种颜色被使用的可能性相同.
(1)求在1至4层中红色恰好被使用1次,黄色没有被使用的概率;
(2)求在1至4层中红色被使用的次数X的分布列和数学期望、方差;
(3)为了使建筑物的色彩绚丽,规定每层只能从上一层未使用的三种颜色中等可能地随机选用一种,已知第1层使用红色,若用Pn表示第n层使用红色的概率,求Pn的表达式,并求出第7层使用红色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是一个空间几何体的三视图,其中正视图与侧视图完全一样,俯视图的外框为正方形,则这个几何体的表面积是(  )
A.80-2πB.80C.80+4πD.80+6π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集A={x|x2-x-6<0},B={x||x+m|>4},若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则下列哪个描述是正确的(  )
A.若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则$\overrightarrow{a}$$⊥\overrightarrow{b}$B.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|
C.若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ使得$\overrightarrow{a}$=$λ\overrightarrow{b}$D.若存在实数λ使得$\overrightarrow{a}$=$λ\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|

查看答案和解析>>

同步练习册答案