精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<π)图象的最高点D的坐标为 ,与点D相邻的最低点坐标为 . (Ⅰ)求函数f(x)的解析式;
(Ⅱ)求满足f(x)=1的实数x的集合.

【答案】解:(Ⅰ)由函数f(x)=Asin(ωx+)的部分图象知,

A=2,

解得T=π,

又∵ 在函数f(x)上,

又∵||<π,∴

(Ⅱ)由

所以 ,k∈Z;

,k∈Z;(11分)

所以实数x的集合为{x| ,k∈Z}.


【解析】(Ⅰ)由函数f(x)的部分图象得出A、T的值,求出ω、φ的值,即可写出f(x);(Ⅱ)由f(x)的解析式,利用正弦函数的图象与性质求出f(x)=1的实数解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是(
A.36
B.12
C.24
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P﹣ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有的点向右平行移动 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(
A.y=sin(2x
B.y=sin(2x
C.y=sin( x
D.y=sin( x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是由满足下列性质的函数f(x)的全体所组成的集合:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立.
(1)指出函数f(x)= 是否属于M,并说明理由;
(2)设函数f(x)=lg 属于M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a,球的半径为R.设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan(α+β)的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2,4), =(﹣1,﹣2).
(1)求 的夹角的余弦值;
(2)若向量 ﹣λ 与2 + 垂直,求λ的值.

查看答案和解析>>

同步练习册答案