精英家教网 > 高中数学 > 题目详情
(2012•深圳一模)已知符号函数sgn=
1,x>0
0,x=0
-1,x<0
,则函数f(x)=sgn(lnx)-ln2x的零点个数为(  )
分析:对lnx的值进行分类讨论,即lnx>0、lnx=0、lnx<0,分别求出等价函数,分别求解其零点个数,然后相加即可.
解答:解:①如果lnx>0,即x>1时,
那么函数f(x)=sgn(lnx)-ln2x转化为函数f(x)=1-ln2x,令1-ln2x=0,得x=e,
即当x>1时.函数f(x)=sgn(lnx)-ln2x的零点是e;
②如果lnx=0,即x=1时,
那么函数f(x)=sgn(lnx)-ln2x转化为函数f(x)=0-ln2x,令0-ln2x=0,得x=1,
即当x=1时.函数f(x)=sgn(lnx)-ln2x的零点是1;
③如果lnx<0,即0<x<1时,
那么函数f(x)=sgn(lnx)-ln2x转化为函数f(x)=-1-ln2x,令-1-ln2x=0,无解,
即当0<x<1时.函数f(x)=sgn(lnx)-ln2x没有零点;
综上函数f(x)=sgn(lnx)-ln2x的零点个数为2.
故选C.
点评:本题主要考查了根的存在性及根的个数判断,考查转化思想,分类讨论思想,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)随机调查某社区80个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别有关系,得到下面的数据表:
休闲方式
性别
看电视 看书 合计
10 50 60
10 10 20
合计 20 60 80
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知点P(x,y)在不等式组
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面区域上运动,则z=x-y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知等比数列{an}的第5项是二项式(
x
-
1
3x
)6
展开式的常数项,则a3a7=
25
9
25
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,平行四边形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD将△BCD折起,使二面角A-BD-C是大小为锐角α的二面角,设C在平面ABD上的射影为O.

(1)当α为何值时,三棱锥C-OAD的体积最大?最大值为多少?
(2)当AD⊥BC时,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知数列{an}满足:a1=
1
2
an+1=
an
enan+e
,n∈N*
(其中e为自然对数的底数).
(1)求数列{an}的通项an
(2)设Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求证:Sn
n
n+1
Tne-n2

查看答案和解析>>

同步练习册答案