精英家教网 > 高中数学 > 题目详情
(2013•杭州一模)设α是第三象限角,且tanα=2,则
sin(
π
2
-α)cos(π+α)
sin(
2
+α)
=(  )
分析:由条件利用同角三角函数的基本关系求得cosα=-
5
5
,化简要求的式子为cosα,从而求得结果.
解答:解:∵α是第三象限角,且tanα=
sinα
cosα
=2,可得 sin2α+cos2α=1,可得 cosα=-
5
5

故 
sin(
π
2
-α)cos(π+α)
sin(
2
+α)
=
cosα•(-cosα)
-cosα
=cosα=-
5
5

故选B.
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杭州一模)若实数x,y满足不等式组
y-x≥0
x+y-7≤0
,则2x+y的最大值为
21
2
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的最小值为
1
3
,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}满足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则首项a1取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设a∈R,则“a=4”是“直线l1:ax+2y-3=0与直线l2:2x+y-a=0平行”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}的前n项和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),则必定有(  )

查看答案和解析>>

同步练习册答案