精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为
3
2

(1)求抛物线C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△OAB的面积;
(3)已知抛物线上一点M(4,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断:直线DE是否过定点?说明理由.
(1)∵F(
p
2
,0)

圆心Q在线段OF的垂直平分线x=
p
4

又∵准线方程为:x=-
p
2

p
4
-(-
p
2
)=
3
2
,得p=2,
∴抛物线C:y2=4x;
(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=
3
(x-1).
y2=4x
y=
3
(x-1)
得:y2-
4
3
3
y-4=0

y1+y2=
4
3
3
y1y2=-4

S=
1
2
×|OF|×|y2-y1|
=
1
2
×1×
(y1+y2)2-4y1y2
=
1
2
16
3
+16
=
4
3
3

(3)设直线DE:
x=my+t
y2=4x
,可得y2-4my-4t=0,则△=16m2+16t>0(*)
设D(x1,y1),E(x2,y2),则y1+y2=4m,y1y2=-4t,
0=
MD
ME
=(x1-4,y1-4)•(x2-4,y2-4)
=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16
=
y12
4
y22
4
-4(
y12
4
+
y22
4
)+16+y1y2-4(y1+y2)+16
=
(y1y2)2
16
-(y1+y2)2+3y1y2-4(y1+y2)+32

=t2-16m2-12t+32-16m,
即t2-12t+32=16m2+16m得:(t-6)2=4(2m+1)2
∴t-6=±2(2m+1)即:t=4m+8或t=-4m+4
代入(*)式检验均满足△>0,
∴直线DE的方程为:x=my+4m+8=m(y+4)+8或:x=m(y-4)+4,
∴直线过定点(8,-4).(定点(4,4)不满足题意,故舍去)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,半圆的直径的长为4,点平分弧,过的垂线交,交
(1)求证:
(2)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C1x2-
y2
4
=1

(1)求与双曲线C1有相同焦点,且过点P(4,
3
)的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当
OA
OB
=3
时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P(2,-1)平分椭圆
x2
12
+
y2
8
=1
的一条弦,则该弦所在的直线方程为______.(结果写成一般式)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=4x上一定点P(x0,2),直线l的一个方向向量
d
=(1,-1)

(1)若直线l过P,求直线l的方程;
(2)若直线l不过P,且直线l与抛物线交于A,B两点,设直线PA,PB的斜率为kPA,kPB,求kPA+kPB的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的右端点为A,短轴端点分别为B、C,另有抛物线y=x2+b.
(Ⅰ)若抛物线上存在点D,使四边形ABCD为菱形,求椭圆的方程;
(Ⅱ)若a=2,过点B作抛物线的切线,切点为P,直线PB与椭圆相交于另一点Q,求
|PQ|
|QB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是F1(-
2
,0),F2(
2
,0)

(1)若椭圆C上一动点M1满足|
M1F1
|+|
M1F2
|=4,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点P(0,t)(t<0)作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为2
3
,求P点的坐标;
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使椭圆C的“伴随圆”上的点到过两点(m,m2),(n,n2)的直线的最短距离dmin=
a2+b2-b
.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且 DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为         

查看答案和解析>>

同步练习册答案