精英家教网 > 高中数学 > 题目详情
抛物线y2=4x上一定点P(x0,2),直线l的一个方向向量
d
=(1,-1)

(1)若直线l过P,求直线l的方程;
(2)若直线l不过P,且直线l与抛物线交于A,B两点,设直线PA,PB的斜率为kPA,kPB,求kPA+kPB的值.
(1)由抛物线y2=4x上一定点P(x0,2),
则4=4x0,∴x0=1.故P(1,2).
∵直线l的一个方向向量
d
=(1,-1)
,∴直线l的斜率为-1.
∴过P(1,2)的直线l的方程为y-2=-1×(x-1),
即x+y-3=0;
(2)设A(x1,y1)、B(x2,y2),由题得直线的斜率为-1.
设不过点P的直线方程为y=-x+b,
y2=4x
y=-x+b
,得y2+4y-4b=0,则y1+y2=-4.
由于P(1,2),
∴kPA+kPB=
y1-2
x1-1
+
y2-2
x2-1

=
y1-2
y12
4
-1
+
y2-2
y22
4
-1

=
4
y1+2
+
4
y2+2

=
4(y1+y2+4)
(y1+2)(y2+2)
=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4,若点P是椭圆C上任意一点,过原点的直线l与椭圆相交于M、N两点,记直线PM、PN的斜率分别为KPM、KPN,当KPMKPN=-
1
4
时,则椭圆方程为(  )
A.
x2
16
+
y2
4
=1
B.
x2
4
+
y2
2
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=8x与点M(-2,2),过C的焦点的直线l与C交于A,B两点,若
MA
MB
=0
,求|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作倾斜角为
π
3
的直线与抛物线交于点A、B,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为
3
2

(1)求抛物线C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△OAB的面积;
(3)已知抛物线上一点M(4,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断:直线DE是否过定点?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=它(a>b>0)的短轴长为2,离心率为
2
2

(它)求椭圆C的方程;
(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设m为椭圆C上一点,且满足
OG
+
OH
=t
Om
(O为坐标原点),当|
mG
-
mH
|<
2
5
3
时,求实数t的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,是圆的直径,是圆的切线,切点为平行于弦,若,则    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.

(1)求∠ADF的度数;
(2)AB=AC,求AC∶BC.

查看答案和解析>>

同步练习册答案