精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=0,an+1=an+2n,那么a2011的值是(  )
分析:由已知可得,an+1-an=2n,利用叠加可求an,然后把n=2011代入到通项中可求
解答:解:由已知可得,an+1-an=2n,a1=0
∴a2-a1=2
a3-a2=4

an-an-1=2n-2
以上n-1个式子相加可得,an-a1=2+4+…+(2n-2)
=
2+2n-2
2
×(n-1)
=n(n-1)
∴an=n(n-1)
a2011=2011×2010
故选D
点评:本题主要考查了利用数列的递推关系求解数列的项,解题的关键是叠加法的应用,但要注意在利用叠加法时一定要准确判断所写式子的项数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案