精英家教网 > 高中数学 > 题目详情
定义在(0,+∞)内的函数f(x),对任意的x,y∈(0,+∞)都有f(xy)=f(x)+f(y),当且仅当x>1时f(x)>0成立.

(1)设x,y∈(0,+∞),求证:f()=f(y)-f(x);

(2)设x1,x2∈(0,+∞),f(x1)>f(x2),试比较x1,x2的大小;

(3)解不等式f()>f(ax-3)(0<a<1).

分析:有关抽象函数的不等式其实就是研究抽象函数的单调性,在把抽象函数不等式转化为普通不等式时,不能忘记抽象函数的定义域要求.

解析:(1)∵f(x)+f(y)=f(xy),

∴f()+f(x)=f(·x)=f(y),

∴f()=f(y)-f(x).

(2)∵f(x1)>f(x2)f(x1)-f(x2)>0

*f()>0>1x1>x2,

∴x1>x2.

(3)由(2)知,f()>f(ax-3)等价于

*

**3<ax<5*loga3>x>loga5.

∴原不等式的解集为(loga5,loga3)(0<a<1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的有
②④
②④

①对于定义在R上的函数f(x),若f(-2)=f(2),则函数f(x)不是奇函数;
②对于定义在R上的函数f(x),若f(-2)≠f(2),则函数f(x)不是偶函数;
③定义在[0,+∞)上函数f(x),若a>0时都有f(a)>f(0),则f(x)是[0,+∞)上增函数;
④定义在R上函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;
⑤对于定义在R上的函数f(x),定义域内的任一个x0都有f(x0)≤M,则称M为函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a=
-
1
4
或0
-
1
4
或0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)己知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1对,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是(  )

查看答案和解析>>

同步练习册答案