精英家教网 > 高中数学 > 题目详情
8.如图,已知三棱柱ABC-A1B1C1的侧面BCC1B1是菱形,D为A1C1的中点,B1C⊥A1B.
(Ⅰ)求证:平面AB1C垂直平面A1BC1
(Ⅱ)求证:A1B∥平面B1CD;
(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC-A1B1C1的表面积.

分析 (Ⅰ)推导出B1C⊥BC1,B1C⊥A1B,从而B1C⊥平面A1BC1,由此能证明平面AB1C垂直平面A1BC1
(Ⅱ)设BC1∩B1C于点E,连DE,推导出DE∥A1B,由此能证明A1B∥平面B1CD.
(Ⅲ)侧面BAA1B1和侧面BCC1B1是两个全等的菱形,侧面ACC1A1是一个正方形,由此能求出三棱柱ABC-A1B1C1的表面积.

解答 证明:(Ⅰ)∵侧面BCC1B1是菱形,∴B1C⊥BC1
∵B1C⊥A1B,且A1B∩BC1=B,∴B1C⊥平面A1BC1
∵B1C?平面AB1C,∴平面AB1C垂直平面A1BC1
(Ⅱ)设BC1∩B1C于点E,连DE,∵在△A1BC1中,D为A1C1的中点,E为BC1的中点,
∴DE∥A1B,
∵DE?平面B1CD,A1B?平面B1CD,
∴A1B∥平面B1CD.
解:(Ⅲ)依题意,在三棱柱ABC-A1B1C1中,
两底面是边长为2的正三角形,面积均为$\sqrt{3}$,
侧面BAA1B1和侧面BCC1B1是两个全等的菱形,面积均为2$\sqrt{3}$,
侧面ACC1A1是一个正方形,面积为4,
∴三棱柱ABC-A1B1C1的表面积为$6\sqrt{3}+4$.

点评 本题考查面面垂直的证明,考查线面平行的证明,考查三棱柱的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.
(1)若∠EDO=30°,求∠AOD;
(2)求证:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(1)求证:DA1⊥ED1
(2)若直线DA1与平面CED1成角为45°,求$\frac{AE}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=(  )
A.$-\sqrt{6}$B.±$\sqrt{6}$C.$-\sqrt{5}$D.±$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,F为BD中点,连接AF交CH于点E,
(Ⅰ)求证:∠BCF=∠CAB;
(Ⅱ)若FB=FE=1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点(x,y)满足(x-1)2+(y-1)2≤1,则满足(y-x)(y-$\frac{1}{x}$)≥0的概率为(  )
A.$\frac{π}{2}$B.$\frac{4}{7}$πC.$\frac{1}{2}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1,若函数y=g[f(x)]有3个不同零点,则k的范围是(  )
A.k=-$\frac{1}{2}$或k>0B.-$\frac{1}{2}$<k<0或k>0C.k≥-$\frac{1}{2}$D.k≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地昆虫种群数量在七月份1~13日的变化如图所示,且满足y=Asin(ωx+φ)(ω>0,φ<0).
(1)根据图中数据求函数解析式;
(2)从7月1日开始,每隔多长时间种群数量就出现一个低谷或一个高峰?

查看答案和解析>>

同步练习册答案