精英家教网 > 高中数学 > 题目详情
18.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为17.

分析 根据学生的人数比,利用分层抽样的定义即可得到结论.

解答 解:设从高一年级学生中抽出x人,由题意得$\frac{x}{360}$=$\frac{20}{400}$,解得x=18,
则从高三年级学生中抽取的人数为55-20-18=17人,
故答案为:17.

点评 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知正方形ABCD的边长为2,E为CD的中点,则$\overrightarrow{AC}•\overrightarrow{BE}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(Ⅰ)求实数m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求证:$\frac{4}{α}$+$\frac{1}{β}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[-1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中角A,B,C所对的边分别是a,b,c,b=$\sqrt{2}$,c=1,cosB=$\frac{3}{4}$.
(1)求sinC的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在极坐标系中,已知点A的极坐标为(2$\sqrt{2}$,-$\frac{π}{4}$),圆E的极坐标方程为ρ=4cosθ+4sinθ,试判断点A和圆E的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当-1≤x≤0时,f(x)=-x2,若直线y=-x+m与函数y=f(x)的图象有两个不同的公共点,则实数m的值为(  )
A.2k-$\frac{1}{4}$(k∈Z)B.2k+$\frac{1}{4}$(k∈Z)C.2k或2k-$\frac{1}{4}$(k∈Z)D.2k或2k+$\frac{1}{4}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.2015年高中生技能大赛中三所学校分别有3名、2名、1名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是(  )
A.$\frac{1}{30}$B.$\frac{1}{15}$C.$\frac{1}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知三棱柱ABC-A1B1C1的侧面BCC1B1是菱形,D为A1C1的中点,B1C⊥A1B.
(Ⅰ)求证:平面AB1C垂直平面A1BC1
(Ⅱ)求证:A1B∥平面B1CD;
(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC-A1B1C1的表面积.

查看答案和解析>>

同步练习册答案