精英家教网 > 高中数学 > 题目详情

已知直线a平面a,直线b平面b,直线cba⊥ba⊥c则( )

Aab          Bab相交

Cab          D以上都有可能

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,经过点(1,e),其中e为椭圆的离心率.且椭圆C与直线y=x+
3
有且只有一个交点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不经过原点的直线l与椭圆C相交与A,B两点,第一象限内的点P(1,m)在椭圆上,直线OP平分线段AB,求:当△PAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
(1)异面直线A1B1与CD1所成的角为45°;
(2)D1C⊥AC1
(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
(4)在棱AA1上不存在点F,使三棱锥F-BCD的体积为直四棱柱体积的
1
5

其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源:2008年北京市丰台区高考数学一模试卷(理科)(解析版) 题型:解答题

已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的大小;
(Ⅲ)若异面直线AB与DE所成角的余弦值为,求k的值.

查看答案和解析>>

科目:高中数学 来源:2008年北京市丰台区高考数学一模试卷(文科)(解析版) 题型:解答题

已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的平面角的正切值.

查看答案和解析>>

同步练习册答案