精英家教网 > 高中数学 > 题目详情
6.已知动点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线中点的轨迹方程是(  )
A.y=2x2B.y=8x2C.$y=4{x^2}+\frac{1}{2}$D.$y=4{x^2}-\frac{1}{2}$

分析 先设AP中点为(x,y),进而根据中点的定义可求出P点的坐标,然后代入到曲线方程中得到轨迹方程.

解答 解:设AP中点为(x,y),则P(2x,2y+1)在2x2-y=0上,即2(2x)2-(2y+1)=0,
∴2y=8x2-1,即y=4x2-$\frac{1}{2}$.
故选D.

点评 本题主要考查轨迹方程的求法,正确运用代入法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{(2+m)x}{{x}^{2}-m}$的图象如图所示,则m的范围为(  )
A.(1,+∞)B.(-2,-1)C.(-2,0)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将一块边长为10的正方形铁片按图1所示的阴影部分裁下,用余下的四个全等的等腰三角形加工成一个底面边长为x的正四棱锥形容器(如图2),则函数f(x)=$\frac{{V}_{E-ABCD}}{x}$的最大值为(  )
A.$\frac{25\sqrt{3}}{6}$B.$\frac{50}{3}$C.$\frac{25}{3}$D.$\frac{125\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设双曲线C的中心为点O,若有且只有一对相交于点O、所成的角为60°的直线A1B1和A${2}_{\;}^{\;}$B2,使|A1B1|=|A${2}_{\;}^{\;}$B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是$(\frac{{2\sqrt{3}}}{3},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知球面上的四点P、A、B、C,PA、PB、PC的长分别为3、4、5,且这三条线段两两垂直,则这个球的体积为(  )
A.$\frac{{1000\sqrt{2}}}{3}π$B.$\frac{{375\sqrt{2}}}{16}π$C.50πD.$\frac{{125\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\sqrt{-{x}^{2}+2x+8}$.
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若点A的坐标为($\frac{1}{2}$,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}的前n项和为Sn,若S3=3,S6=15,则a10+a11+a12=(  )
A.21B.30C.12D.39

查看答案和解析>>

同步练习册答案