精英家教网 > 高中数学 > 题目详情
已知f(x)为偶函数,且f (2+x)=f (2-x),当-2≤x≤0时,f(x)=2x,an=f (n),n∈N*,则a2010的值为(  )
A、2010
B、4
C、
1
4
D、-4
分析:由f(x)为偶函数,且f (2+x)=f (2-x),推出f(x)是周期为4的周期函数,
由an=f (n)得,a2010=f (2010)=f (4×502+2)=f (2)=f (-2).
解答:解:∵f (2+x)=f (2-x),∴f (x)=f (4-x),又f(x)为偶函数,∴f (-x)=f (x),
∴f (-x)=f (4-x),∴f (x)=f (x+4),∴f(x)是周期等于4的周期函数,
∵an=f (n),当-2≤x≤0时,f(x)=2x
∴a2010=f (2010)=f (4×502+2)=f (2)=f (-2)=2-2=
1
4

故答案为  
1
4
点评:本题考查偶函数的性质、函数的周期性,利用函数的奇偶性和周期性求函数值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为偶函数,且x>0时,f(x)=
1
a
-
1
x
(a>0)

(1)判断函数f(x)在(0,∞)上的单调性,并证明;
(2)若f(x)在[
1
2
,2]
上的值域是[
1
2
,2]
,求a的值;
(3)求x∈(-∞,0)时函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,它在零到正无穷上是增函数,求f(2m-3)<f(8)的m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,且f(1+x)=f(3-x),当-2≤x≤0时,f(x)=3x,则f(2011)=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,满足f[f(a)]=
1
2
的实数a的个数为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,x≥0 时,f(x)=x3-8,则f(x-2)>0的解集为
 

查看答案和解析>>

同步练习册答案