精英家教网 > 高中数学 > 题目详情
一台机器由于使用时间较长,生产的零件有一些会有缺损.按不同转速生产出来的零件有缺损的统计数据如下:
转速x(转/s)18161412
每小时生产有缺损零件数y(件)11975
(Ⅰ)作出散点图;
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)
2
a=
.
y
-b
.
x
(I)散点图如下:
…(1分)
(II)设线性回归方程为y=bx+a.由题意可得
.
x
=15
,…(2分)
.
y
=8
,…(3分)
4
i=1
xi2=920
,…(4分)
4
i=1
xiyi=500
,…(5分)n
.
x
.
y
=480
,…(6分)
所以b=
500-480
920-900
=1
,…(7分)a=8-1×15=-7…(8分)
∴y=x-7…(10分)
(Ⅲ)令x-7≤8,得x≤15,故机器运转速度控制在15转/s范围内.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知x与y之产间的几组数据如下表:
x0123
y0267
则y与x的线性回归方程
y
=bx+a必过(  )
A.(1,2)B.(2,6)C.(
3
2
15
4
D.(3,7)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n次方个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是(  )
A.直线l过点(
.
x
.
y
)
B.x和y的相关系数为直线l的斜率
C.x和y的相关系数在0到1之间
D.当n为偶数时,分布在l两侧的样本点的个数一定相同

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:
广告支出x(单位:万元)1234
销售收入y(单位:万元)12284256
(Ⅰ)画出表中数据的散点图;
(Ⅱ)求出y对x的回归直线方程
?
y
=bx+a
,其中
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(
xi
-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i
-n
.
x
2
a=
.
y
-b
.
x
.

(Ⅲ)若广告费为9万元,则销售收入约为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设有一个回归方程为
y
=2-3
x
,则变量x增加一个单位时(  )
A.y平均增加3个单位B.y平均增加2个单位
C.y平均减少3个单位D.y平均减少2个单位

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某产品的成本费用x与销售额y的统计数据如下表:
成本费用x(万元)2345
销售额y(万元)26394954
根据上表可得回归方程
y
=
b
x+
a
中的
b
为9.4,据此模型预报成本费用为6万元时销售额为(  )
A.72.0万元B.67.7万元C.65.5万元D.63.6万元

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有如下几个结论:
①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好;
②回归直线方程:
y
=bx+a
一定过样本点的中心:(
.
x
.
y

③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适;
④在独立性检验中,若公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有(  )个.
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在独立性检验时计算的K2的观测值k=3.99,那么我们有______的把握认为这两个分类变量有关系.
P(K2≥k00.150.100.050.0250.0100.005
k02.0722.7063.845.0246.6357.879

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某射手射击1次击中目标的概率是0.9他连续射击4次且他各次射击是否击中目标是相互独立的,则他至少击中目标1次的概率为_________.

查看答案和解析>>

同步练习册答案