精英家教网 > 高中数学 > 题目详情
抛物线抛物线y2=4x上有两个定点A (1,2)B(4,-4),在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,P点的坐标为(  )
A.(
1
4
,-1)
B.(0,0)C.(1,-2)D.(
1
4
,1)
由A(1,2),B(4,-4)可得 |AB|=
(1-4)2+(2+4)2
=3
5

并且直线AB的方程为
y-2
-4-2
=
x-1
4-1
,化简得2x+y-4=0.
设在抛物线AOB这段曲线上任一点P(x0,y0),且1≤x0≤4,-4≤y0≤2.
则点P到直线AB的距离d=
|2x0+y0-4|
1+4
=
|2×
y0 2
4
+y0-4|
5
=
|
1
2
(y0+1)2-
9
2
|
5

所以当y0=-1时,d取最大值
9
5
10

所以△PAB的面积最大值为S=
1
2
×3
5
×
9
5
10
=
27
4

此时P点坐标为(
1
4
,-1).
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则P点的轨迹方程为(  )
A、y2=4(x-2)B、y2=-4(x+2)C、y2=4(x+2)D、y2=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若曲线y=f(x)在x=1处的切线也是抛物线y2=4(x-1)切线,求a的值;
(2)若对于任意x∈R,f(x)>0恒成立,试确定实数a的取值范围;
(3)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(
7
2
,4),则|PA|+|PM|的最小值是
9
2
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2),则kOA•kOB=
-4
-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则P点的轨迹方程为(  )
A.y2=4(x-2)B.y2=-4(x+2)C.y2=4(x+2)D.y2=x-1

查看答案和解析>>

同步练习册答案