精英家教网 > 高中数学 > 题目详情
如图6,已知向量ab,求作向量a+b.

          

图6                        图7                        图8

解:作法一:在平面内任取一点O(如图7),作=a,=b,则=a+b.

作法二:在平面内任取一点O(如图8),作=a,=b.以OA、OB为邻边作OACB,连结OC,则=a+b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•崇明县一模)如图,已知椭圆C:
x2
a2
-
y2
b2
=1
(a>0,b>0)过点P(
2
6
),上、下焦点分别为F1、F2,向量
PF1
PF2
.直线l与椭圆交于A,B两点,线段AB中点为m(
1
2
,-
3
2
).
(1)求椭圆C的方程;
(2)求直线l的方程;
(3)记椭圆在直线l下方的部分与线段AB所围成的平面区域(含边界)为D,若曲线x2-2mx+y2+4y+m2-4=0与区域D有公共点,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(01)(解析版) 题型:解答题

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量和特征值λ2=2及对应的一个特征向量,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-2-6所示,已知向量abc,求作向量a+b+c.

图2-2-6

查看答案和解析>>

同步练习册答案