精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.
分析:(1)先证明OB⊥AE,利用BD⊥PE,AE∩PE=E,根据线面垂直的判定定理,可得BD⊥平面PAE;
(2)证明PO⊥平面ABCD,再求四棱锥P-ABCD的体积.
解答:(1)证明:∵AB=BC,BE=CD,∠ABC=∠BCD
∴△ABE≌△BCD
∴∠EAB=∠CBD
∴∠BOE=∠EAB+∠OBA=∠CBD+∠OBA=90°
∴OB⊥AE
∵BD⊥PE,AE∩PE=E,
∴BD⊥平面PAE
∵BD?平面ABCD
∴平面PAE⊥平面ABCD; 
(2)解:过P作PO′⊥AE,O′为垂足
∴平面PAE⊥平面ABCD,
∴PO′⊥平面ABCD,
∴∠PAO′为直线PA与平面ABCD所成角,
∴tan∠PAO′=
5
2

Rt⊥ABE中,OB=
AB×BE
AE
=
2
5
,AO=
4
5

PO
AO
=
5
2
=tan∠PAO′=
PO′
AO′

∴O,O′重合
∴PO⊥平面ABCD,
VP-ABCD=
1
3
SABCD×PO=2
点评:本题考查线面垂直、面面垂直,考查四棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案