精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.
分析:(Ⅰ)利用线面垂直的性质,可得线线垂直,再利用线面垂直的判定,即可证明BD⊥平面PAB.
(Ⅱ)建立空间直角坐标系,求出平面PCD的法向量,利用向量的夹角公式,即可求直线AC与平面PCD所成角的正弦值.
解答:(Ⅰ)证明:∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD
∵PC⊥平面BDE,BD?平面BDE
∴PC⊥BD,又PA∩PC=P
∴BD⊥平面PAB;
(Ⅱ)解:建立如图所示的坐标系,

则AD=4,A(0,0,0),B(2,0,0),C(2,1,0),D(0,4,0),P(0,0,4)
AC
=(2,1,0),
PC
=(2,1,-4),
PD
=(0,4,-4)
令平面PCD的法向量为
n
=(x,y,z),则
n
PC
=0
n
PD
=0
,可得
2x+y-4z=0
4y-4z=0

令z=1,可得
n
=(
3
2
,1,1),
∴直线AC与平面PCD所成角的正弦值为|cos<
AC
n
>|=
AC
n
|
AC
||
n
|
=
8
85
85
点评:本题考查线面垂直的性质与判定,考查线面角,考查学生分析夹角问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案