【答案】
分析:设AC、BD的交点为F,连接PF,则PF是四棱锥P-ABCD的高且四棱锥P-ABCD的外接球球心O在PF上.由正四棱锥的性质,结合题中数据算出AF=4且PF=8,Rt△AOF中根据勾股定理,得R
2=4
2+(8-R)
2,解之得R=5,利用球的表面积公式即可算出经过该棱锥五个顶点的球面面积.
解答:
解:设AC、BD的交点为F,连接PF,则PF是四棱锥P-ABCD的高,
根据球的对称性可得四棱锥P-ABCD的外接球球心O在直线PF上,
∵正方形ABCD边长为

,∴AF=

AB=4
Rt△PAF中,PF=

=8
连接OA,设OA=0P=R,则
Rt△AOF中AO
2=AF
2+OF
2,即R
2=4
2+(8-R)
2解之得R=5
∴四棱锥P-ABCD的外接球表面积为S=4πR
2=4π×5
2=100π
故答案为:100π
点评:本题给出正四棱锥,求它的外接球的表面积,着重考查了正四棱锥的性质、勾股定理和球的表面积公式等知识,属于基础题.