ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=
1
2
+log2
x
1-x
ͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
OM
=
1
2
(
OA
+
OB
)
£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£®
£¨1£©ÇóµãMµÄ×Ý×ø±ê£»
£¨2£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬
¢ÙÇóSn£»
¢ÚÒÑÖªan=
2
3
£¬n=1
1
(Sn+1)(Sn+1+1)
£¬n¡Ý2
£¬ÆäÖÐn¡ÊN*£¬TnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn¡Ü¦Ë£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄ×îСÕýÕûÊýÖµ£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÌõ¼þÖªMÊÇABµÄÖе㣬ÓÉÖеã×ø±ê¹«Ê½¿ÉÒÔÇó³öMµãµÄ¸ø×ø±ê£®
£¨2£©¢ÙSn=
n-1
i=1
f(
i
n
)
=f(
1
n
)+f(
2
n
)++f(
n-1
n
)
£¬¼´ Sn=f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)
ÒÔÉÏÁ½Ê½Ïà¼ÓºóÁ½±ßÔÙͬʱ³ýÒÔ2¾ÍµÃµ½Sn£®¢Úµ±n¡Ý2ʱ£¬¸ù¾ÝÌâÉèÌõ¼þ£¬ÓÉTn£¼¦Ë£¨Sn+1+1£©µÃ
2n
n+2
£¼¦Ë•
n+2
2
£¬¡à¦Ë£¾
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4
£¬ÔÙÓɾùÖµ²»µÈʽÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÓÉ
OM
=
1
2
(
OA
+
OB
)
ÖªMΪÏ߶ÎABµÄÖе㣮
ÓÖ¡ßMµÄºá×ø±êΪ
1
2
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©¼´
x1+x2
2
=
1
2
?x1+x2=1

¡ày1+y2=1+log2(
x1
1-x1
x2
1-x2
)=1+log21=1?
y1+y2
2
=
1
2

¼´MµãµÄ×Ý×ø±êΪ¶¨Öµ
1
2
£®
 £¨2£©¢ÙÓÉ£¨¢ñ£©¿ÉÖªf£¨x£©+f£¨1-x£©=1£¬
ÓÖ¡ßn¡Ý2ʱSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)

¡àSn=f(
n-1
n
)+f(
n-2
n
)+••+f(
1
n
)

Á½Ê½Ïë¼ÓµÃ£¬2Sn=n-1
Sn=
n-1
2

¢Úµ±n¡Ý2ʱ£¬an=
1
(Sn+1)(Sn+1+1) 
=
4
(n+1)(n+2)
=4£¨
1
n+1
-
1
n+2
£©
ÓÖn=1ʱ£¬a1=
2
3
Ò²Êʺϣ®
¡àan=4£¨
1
n+1
-
1
n+2
£©                                                                                     
¡àTn=
4
2¡Á3
+
4
3¡Á4
++
4
(n+1)(n+2)
=4(
1
2
-
1
3
+
1
3
-
1
4
++
1
n+1
-
1
n+2
)
=4(
1
2
-
1
n+2
)=
2n
n+2
(n¡ÊN*)

ÓÉ
2n
n+2
¡Ü¦Ë(
n
2
+1)
ºã³ÉÁ¢(n¡ÊN*)?¦Ë¡Ý
4n
n2+4n+4

¶ø
4n
n2+4n+4
=
4
n+
4
n
+4
¡Ü
4
4+4
=
1
2
£¨µ±ÇÒ½öµ±n=2È¡µÈºÅ£©
¡à¦Ë¡Ý
1
2
£¬¡à¦ËµÄ×îСÕýÕûÊýΪ1£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÓ뺯Êý¡¢º¯ÊýµÄͼÏó¡¢²»µÈʽµÈ×ÛºÏÄÚÈÝ£¬º¯ÊýͼÏó³ÉÖÐÐĶԳƵÄÓйØ֪ʶ£¬¿¼²éÏà¹Ø·½·¨£¬¿¼²éÁËÊýÁÐÖг£ÓõÄ˼Ïë·½·¨£¬Èçµ¹ÐòÏà¼Ó·¨£¬ÁÑÏîÏàÏû·¨ÇóÊýÁÐÇ°nÏîµÄºÍ£¬ÀûÓú¯ÊýÓë·½³ÌµÄ˼Ï룬ת»¯Ó뻯¹é˼Ïë½â´ðÈȵãÎÊÌâ--Óйغã³ÉÁ¢ÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=4yµÄ½¹µãΪF£¬Ö±Ïßl¹ýµãF½»Å×ÎïÏßCÓÚA¡¢BÁ½µã£®
£¨¢ñ£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Çó
1
y1
+
1
y2
µÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃÎÞÂÛABÔõÑùÔ˶¯¶¼ÓСÏAQF=¡ÏBQF£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf(x)=
1
2
+log2
x
1-x
µÄͼÏóÉÏÁ½µã£¬ÇÒ
OM
=
1
2
(
OA
+
OB
)
£¬OΪ×ø±êÔ­µã£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£®
£¨¢ñ£©ÇóÖ¤£ºµãMµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨¢ò£©¶¨Ò嶨ÒåSn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬ÇóS2011£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄSn£¬Éèan=
1
2Sn+1
(n¡ÊN*)
£®Èô¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽkan3-3an2+1£¾0ºã³ÉÁ¢£¬ÊÔÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÍÖÔ²
y2
a2
+
x2
b2
=1(a£¾b£¾0)
ÉϵÄÁ½µã£¬ÒÑÖªOΪ×ø±êÔ­µã£¬ÍÖÔ²µÄÀëÐÄÂÊe=
3
2
£¬¶ÌÖ᳤Ϊ2£¬ÇÒ
m
=(
x1
b
£¬
y1
a
)£¬
n
=(
x2
b
£¬
y2
a
)
£¬Èô
m
n
=0
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßAB¹ýÍÖÔ²µÄ½¹µãF£¨0£¬c£©£¨cΪ°ë½¹¾à£©£¬Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=
1
2
+log2
x
1-x
ͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
OM
=
1
2
£¨
OA
+
OB
£©£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£¬ÇÒÓÐSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬
£¨1£©ÇóµãMµÄ×Ý×ø±êÖµ£»
£¨2£©Çós2£¬s3£¬s4¼°Sn£»
£¨3£©ÒÑÖªan=
1
(Sn+1)(Sn+1+1)
£¬ÆäÖÐn¡ÊN*£¬ÇÒTnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn¡Ü¦Ë£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄ×îСÕýÕûÊýÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©¡¢C£¨x3£¬y3£©ÊÇÅ×ÎïÏßy=x2ÉϵÄÈý¸ö¶¯µã£¬ÆäÖÐx3£¾x2¡Ý0£¬¡÷ABCÊÇÒÔBΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©ÇóÖ¤£ºÖ±ÏßBCµÄбÂʵÈÓÚx2+x3£¬Ò²µÈÓÚ
x2-x1x3-x2
£»
£¨2£©ÇóA¡¢CÁ½µãÖ®¼ä¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸