精英家教网 > 高中数学 > 题目详情

在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,曲线的方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)设曲线和曲线的交点,求.

(1)曲线的普通方程:;曲线的直角坐标方程为.
(2)

解析试题分析:(1)由为参数)消去参数得曲线的普通方程
代入得曲线的直角坐标方程.   
(2)由于曲线为直线,曲线为圆,所以求出圆的半径及圆心到直线的距离,再由便可求得.
试题解析:(1)由为参数)消去参数得曲线的普通方程:
代入得曲线的直角坐标方程为   4分
(2)曲线可化为,表示圆心在,半径的圆,
所以圆心到直线的距离为
所以                                        10分
考点:1、参数方程与普通方程的转化;2、极坐标方程与直角坐标方程的转化;3、点到直线的距离公式;4、圆的弦长的求法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点.
(1)求点Q的轨迹C2的方程;
(2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系中,直线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为
(Ⅰ)求直线的极坐标方程;
(Ⅱ)若直线与曲线相交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点(-2,-4)的直线的参数方程为为参数),直线与曲线相交于两点.
(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直角坐标系中,曲线的参数方程为为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.
(Ⅰ)求曲线的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线与曲线有两个不同的公共点,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为为参数).
(1) 求曲线的直角坐标方程以及曲线的普通方程;
(2) 设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程为,直线的参数方程为(t为参数,0≤).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点
(I)求曲线的方程;
(II)若点在曲线上,求的值.

查看答案和解析>>

同步练习册答案