精英家教网 > 高中数学 > 题目详情

设函数f(x)=a-数学公式
(1)求证:f(x)是增函数;
(2)求a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

(1)证明:任取x1,x2∈R,且x1<x2
f(x1)-f(x2)=a--a+=(2分)
∵y=2x在(-∞,+∞)上递增,而x1<x2-<0(4分)
又(+1)(+1)>0∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴f(x)在(-∞,+∞)上是增函数(6分)

(2)解:f(x)为奇函数,f(0)=a-=a-1=0∴a=1
经检验,a=1时f(x)是奇函数(10分)
(3)由(2)知,f(x)=1-
∵2x+1>1∴0<<1∴f(x)∈(-1,1)(14分)
分析:(1)单调性的证明,要设出单调区间上的自变量x1<x2,作差f(x1)-f(x2)在进行化简,分解成因式的积或商的形式,来判断符号,
(2)要充分利用函数的奇偶性的概念,对于奇函数有一个结论:奇函数在x=0处有定义,则有f(0)=0,本题可以充分利用这一点来求参数a的值.
(3)可有(2)的结论求出f(x)的解析式后,求函数的值域.
点评:本题考查了函数的单调性,奇偶性的概念及其判断、证明,函数的值域的求法.对于利用定义来证明函数的单调性要注意做差后对式子f(x1)-f(x2)的化简,利用符号法则来判断其符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=A+Bsinx,若B<0时,f(x)的最大值是
3
2
,最小值是-
1
2
,则A=
 
,B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间;
(2)当x∈[0,
π
6
]
时,f(x)的最大值为4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a+bcosx+csinx的图象过点(0,1)和点(
π
2
,1)
,当x∈[0,
π
2
]
时,|f(x)|<2,则实数a的取值范围是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b与c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),设函数f(x)=
a
b
(x∈R)的图象关于直线x=
π
3
对称,其中常数ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象向左平移
π
12
个单位,得到函数g(x)的图象,用五点法作出函数g(x)在区间[-
π
2
π
2
]的图象.

查看答案和解析>>

同步练习册答案