精英家教网 > 高中数学 > 题目详情
已知平面向量=(cosψ,sinψ),=(cosx,sinx),=(sinψ,-cosψ),其中0<ψ<π,且函数f(x)=()cosx+()sinx的图象过点(,1)。
(1)求ψ的值;
(2)将函数y=f(x)图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[0,]上的最大值和最小值。
解:(1)∵








(2)由(1)得
于是

时,
所以
即当时,取最小值
时,取得最大值1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的个数为(  )
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)与
b
=(-3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作为平面内所有向量的一组基底
(4)若
a
b
,则
a
b
上的投影为|
a
|

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的个数为(  )
(1)
AB
+
MB
+
BC
+
OM
+
CO
=
AB

(2)已知向量
a
=(6,2)与
b
=(-3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量
e1
=(2,-3),
e2
=(
1
2
,-
3
4
)
能作为平面内所有向量的一组基底
(4)若
a
b
,则
a
b
上的投影为|
a
|
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案