精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥P-ABC中,PA⊥面ABC,其中正视图为Rt△PAC,AC=2
6
,PA=4,俯视图也为直角三角形,另一直角边长为2
2

(1)画出侧视图并求侧视图的面积;
(2)求三棱锥P-ABC体积.
分析:(1)根据侧视图的定义,作出侧视图,并求出面积.
(2)利用锥体的体积公式求体积.
解答:解:(1)该几何体的侧视图为其中高为4,底为2
2

所以侧视图的面积为S=
1
2
×4×2
2
=4
2

(2)三棱锥 的高为PA=4,底面直角三角形ABC的边长为AC=2
6
,AB=2
2

所以三棱锥P-ABC体积为
1
3
×
1
2
×2
6
×2
2
×4=
16
3
3
点评:本题主要考查三视图的识别以及几何体的体积公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥P-ABC中,PA⊥平面ABC,AN⊥BC于N,D是AB的中点,且PA=1,AN=BN=CN=
2

(1)求证:PB⊥AC;
(2)求异面直线CD与PB所成角的大小;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC的侧面PAB是等边三角形,D是AB的中点,PC=BC=AC=2,PB=2
2

(1)证明:AB⊥平面PCD;
(2)求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB的中点,且△PDB是正三角形,PA⊥PC.
(I)求证:DM∥平面PAC;
(II)求证:平面PAC⊥平面ABC;
(Ⅲ)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,底面△ABC是边长为4
2
的等边三角形,又PA=PB=2
6
PC=2
10

(I)证明平面PAB⊥平面ABC;
(Ⅱ)求直线PB与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案