长度为
(
)的线段AB的两个端点A、B分别在
轴和
轴上滑动,点P在线段AB上,且满足
(
为常数,且
).
(1)求点P的轨迹方程C;
(2)当
时,过点M(1,0)作两条互相垂直的直线
和
,
和
分别与曲线C相交于点N和Q(N、Q都异于点M),试问△MNQ能不能是等腰三角形?若能,这样的三角形有几个;若不能,请说明理由.
解:(1)依题意,设点A、B的坐标分别为(
,0)、(0,
),点P的坐标为(
,
).
由
,故![]()
![]()
∴
,即![]()
∵
,∴![]()
∴![]()
∴点P的轨迹方程C是![]()
(2)当
时,曲线C的方程是
,故点M(1,0)在曲线C上
依题意,可知直线
和
都不可能与坐标轴平行,可设直线
方程为
,
直线
方程为
,不妨设
>0.
由
,消去y得![]()
由
,又
得
,
∴|MN|=![]()
=![]()
=
.
同理可得|MQ|=![]()
=
.
假设△MNQ是等腰三角形,则|MN|=|MQ|,
即
=
,
化简得
,
∴
或
①
①式的判别式△=![]()
若△=
<0,解得
,此时式①得
无解;
若△=
=0,解得
,由式①得
;
若△=
>0,解得
,由式①得![]()
(可以验证
且
).
综上所述,△MNQ能是等腰三角形,
当
时,这样的三角形有1个;
当
时,这样的三角形有3个.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com