已知函数f(x)=logax+2x和g(x)=2loga(2x+t-2)+2x(a>0,a≠1,t∈R)的图象在x=2处的切线互相平行.(Ⅰ)求t的值;(Ⅱ)设F(x)=g(x)-f(x),当x∈[1,4]时,F(x)≥2恒成立,求a的取值范围.
(Ⅰ) t=6. (Ⅱ) 1<a≤4
(Ⅰ)f??(x)=logae+2,g??(x)=logae+2,
∵函数f(x)和g(x)的图象在x=2处的切线互相平行,
f??(2)=g??(2),∴logae=logae,t=6.
(Ⅱ)∵t=6,∴F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga,x∈[1,4],
令h(x)==4x+,x∈[1,4],∴h??(x)=4-=,x∈[1,4],
∴当1≤x<2时,h??(x)<0,当2<x≤4时,h??(x)>0,
∴h(x)在[1,2)是单调减函数,在(2,4]是单调增函数,
∴h??(x)min=h(2)=32,h??(x)max=h(1)=h(4)=36,
∴当0<a<1时,有F(x) min=loga36,当a>1时,有F(x) max=loga32.
∵当x∈[1,4]时,F(x)≥2恒成立,∴F(x) min≥2,
∴满足条件的a的值满足下列不等式组 ①,或 ②
不等式组①的解集为空集,解不等式组②得1<a≤4,
综上所述,满足条件的
的取值范围是:1<a≤4.
科目:高中数学 来源: 题型:
已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函数y=g(x)-x在[0,1]上的最小值;
(2)当a≥
时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.
(3)当x≥0时,g(x)≥-
f(x)+
恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x-16,
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
查看答案和解析>>
科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com