精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,斜边AB=
2
a
,侧棱AA1=2a,点D是AA1的中点,那么截面DBC与底面ABC所成二面角的大小是(  )
分析:根据直三棱柱的结构特征,得知侧面A1C1CA⊥底面ABC.由于底面ABC是等腰直角三角形,所以BC⊥AC,所以BC⊥侧面A1C1CA,BC⊥DC,所以∠DCA为截面DBC与底面ABC所成二面角的平面角.在RT△DAC中求解即可.
解答:解:三棱柱ABC-A1B1C1是直三棱柱,所以侧棱和底面垂直,从而侧面和底面垂直,所以侧面A1C1CA⊥底面ABC.
侧面A1C1CA∩底面ABC=AC.由于底面ABC是等腰直角三角形,所以BC⊥AC,根据平面和平面垂直的性质定理得
BC⊥侧面A1C1CA,BC⊥DC,所以∠DCA为截面DBC与底面ABC所成二面角的平面角.
在RT△DAC中,DA=a,AC=a,所以∠DCA=45°.
故选:B.
点评:本题考查二面角求解,关键是找出或作出二面角的平面角,将空间问题转化为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案