精英家教网 > 高中数学 > 题目详情
(2010•天津模拟)如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求二面角A-EG-D的正切值;
(Ⅲ) 求六面体ABCDEFG的体积.
分析:(Ⅰ)设DG的中点为M,连接AM、FM,证明BF平行平面ACGD内的直线AM,即可证明BF∥平面ACGD;
(Ⅱ)连接EG,取EG的中点O,连接DO,AO,则易得∠AOD为所求二面角的平面角,从而可求二面角A-EG-D的正切值;
(Ⅲ)利用V多面体ABC-DEFG=V三棱柱ADM-BEF+V三棱柱ABC-MFG直接求五面体ABCDEFG的体积.
解答:证明:(Ⅰ)设DG的中点为M,连接AM、FM,
则由已知条件易证四边形DEFM是平行四边形,
所以MF∥DE,且MF=DE
又∵AB∥DE,且AB=DE
∴MF∥AB,且MF=AB
∴四边形ABMF是平行四边形,即BF∥AM,
又BF?平面ACGD 故BF∥平面ACGD
(Ⅱ)连接EG,取EG的中点O,连接DO,AO
∵DE=DG=2,∴DO⊥EG,DO=
2

∵AD⊥平面DEFG,∴AO⊥EG
∴∠AOD为所求二面角的平面角
∵AD=2,∴tan∠AOD=
2
2
=
2

∴二面角A-EG-D的正切值为
2

(Ⅲ)V多面体ABC-DEFG=V三棱柱ADM-BEF+V三棱柱ABC-MFG=DE×S△ADM+AD×S△MFG
=
1
2
×2×1+2×
1
2
×2×1
=4.
点评:本题考查直线与平面平行的判定,棱柱、棱锥、棱台的体积,考查逻辑思维能力,空间想象能力,考查面面角,关键是根据题意作出二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•天津模拟)给出下列四个命题:
①已知a=
π
0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是
①③④
①③④
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是
2(π+
3
2(π+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)已知a∈R,且
-a+i
1-i
为纯虚数,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如果圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为
2
,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)正项等比数列{an}满足a2a4=1,S3=13,bn=log3an,则数列{bn}的前10项和是(  )

查看答案和解析>>

同步练习册答案