精英家教网 > 高中数学 > 题目详情
(2013•虹口区二模)已知函数f(x)=
x2+(a-1)x-2a+22x2+ax-2a
的定义域是使得解析式有意义的x的集合,如果对于定义域内的任意实数x,函数值均为正,则实数a的取值范围是
-7<a≤0或a=2
-7<a≤0或a=2
分析:题目给出的函数是分式函数,且分子分母均为二次三项式,对应的函数均开口向上,所以分分子分母对应的方程同解和不同解讨论,同解时利用系数相等求a的值,不同解时,若a≠0,则需分子分母对应的方程均无解,a=0时,在定义域内函数值恒大于0.
解答:解:给出的函数分子分母都是二次三项式,对应的图象都是开口向上的抛物线,若分子分母对应的方程是同解方程,
a-1=
a
2
-a=-2a+2
,解得a=2.此时函数的值为f(x)=
1
2
>0.
若分子分母对应的方程不是同解方程,要保证对于定义域内的任意实数x,函数值均为正,则需要分子分母的判别式均小于0,即
(a-1)2-4(2-2a)<0①
a2-4×2×(-2a)<0②

解①得-7<a<1.
解②得-16<a<0.
所以a的范围是-7<a<0.
当a=0时,函数化为f(x)=
x2-x+2
2x2
,函数定义域为{x|x≠0},分母恒大于0,分子的判别式小于0,分子恒大于0,函数值恒正.
综上,对于定义域内的任意实数x,函数值均为正,则实数a的取值范围是-7<a≤0或a=2.
点评:本题考查了利用函数的值的范围求解参数问题,考查了分类讨论得数学思想,解答此题的关键是分析出函数值恒正时的分子分母的取值情况,此题属中档题,容易漏掉a=0,也是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知函数y=2sin(x+
π
2
)cos(x-
π
2
)
与直线y=
1
2
相交,若在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则|
M1M13
|
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)在正方体ABCD-A1B1C1D1中与异面直线AB,CC1均垂直的棱有(  )条.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数zn=an+bn•i,其中an∈R,bn∈R,n∈N*,i是虚数单位,且zn+1=2zn+
.
zn
+2i
,z1=1+i.
(1)求数列{an},{bn}的通项公式;
(2)求和:①z1+z2+…+zn;②a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)函数f(x)=(2k-1)x+1在R上单调递减,则k的取值范围是
-∞,
1
2
-∞,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数z=
(1-i)31+i
,则|z|=
2
2

查看答案和解析>>

同步练习册答案