精英家教网 > 高中数学 > 题目详情
设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.
(1) a=1,b=0. (2)
(1)因为f(1)=b,由点(1,b)在xy=1上,可得1+b=1,即b=0.
因为f′(x)=anxn-1a(n+1)xn,所以f′(1)=-a.
又因为切线xy=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.
(2)由(1)知,f(x)=xn(1-x)=xnxn+1f′(x)=(n+1)xn-1.
f′(x)=0,解得x,在上,f′(x)>0,故f(x)单调递增;
而在上,f′(x)<0,故f(x)单调递减.
f(x)在(0,+∞)上的最大值为fn·.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yxcos x-sin x在下面哪个区间内是增函数 (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

则f′(x)的解集为(    )
A.B.(-1,0)C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则  (  ).
A.g(a)<0<f(b)B.f(b)<0<g(a)
C.0<g(a)<f(b)D.f(b)<g(a)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,且为偶函数,当时,有(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=aln xx在区间[2,3]上单调递增,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yf(x),其导函数yf′(x)的图象如图所示,则yf(x) (  ).
A.在(-∞,0)上为减函数
B.在x=0处取极小值
C.在(4,+∞)上为减函数
D.在x=2处取极大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的连续函数,对任意x都有,且其导函数满足,则当时,有(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案