精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
(1)当时,的单调增区间为;当时,的单调增区间为,减区间为;(2)不存在保值区间.

试题分析:本题主要考查函数与导数以及运用导数求单调区间、极值等数学知识和方法,考查思维能力、运算能力、分析问题解决问题的能力,考查转化思想和分类讨论思想.第一问,先对求导,令,可以看出的单调区间是由0和1断开的,现在所求的范围是,所以将从0断开,分两部分进行讨论,分别判断的正负来决定的单调性;第二问,用反证法证明,先假设存在保值区间,先求出,再求导,因为,所以可以求出最值,即方程有两个大于1的相异实根,下面证明函数有2个零点,通过2次求导,判断单调性和极值确定只有一个零点,所以与有2个大于1的实根矛盾,所以假设不成立,所以不存在保值区间.
试题解析:(1)当时,,此时的单调增区间为
时,,此时的单调增区间为,减区间为       4分
(2)函数上不存在保值区间。     5分
证明如下:
假设函数存在保值区间[a,b]. ,
时,所以为增函数,     所以
即方程有两个大于1的相异实根。           7分

,所以上单增,又
即存在唯一的使得                        9分
时,为减函数,当时,为增函数,
所以函数处取得极小值。又因
所以在区间上只有一个零点,             11分
这与方程有两个大于1的相异实根矛盾。
所以假设不成立,即函数上不存在保值区间。   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的极值;
(Ⅲ)对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数。(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证:当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数>0)
(1)若的一个极值点,求的值;
(2)上是增函数,求a的取值范围
(3)若对任意的总存在成立,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若,且,则的最小值是(  )
A.-16B.-12C.-10D.-8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数上的导函数为,且不等式恒成立,又常数,满足,则下列不等式一定成立的是        .
;②;③;④.

查看答案和解析>>

同步练习册答案