精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的极值;
(Ⅲ)对恒成立,求实数的取值范围.
(Ⅰ);(Ⅱ);(Ⅲ).

试题分析:(Ⅰ)本小题首先利用导数的公式和法则求得原函数的导函数,根据导数的几何意义可求得函数的切线方程为,化简可得
(Ⅱ)本小题首先求得函数的定义域,然后根据(Ⅰ)中求得的导函数去求导数的零点,通过列表分析其单调性,进而寻找极值点;
(Ⅲ)本小题针对恒成立问题,首先考虑对不等式分离参数,然后转化为求函数上的最小值的问题,通过求导、分析单调性,然后得出函数的最小值为,于是.
试题解析:(Ⅰ)函数的定义域为,                              1分
,                                           2分
,                               3分
曲线在点处的切线方程为
,                                   4分
(Ⅱ)令,得,                                  5分
列表:





-
0
+




                                                                 7分
函数的极小值为,                         8分
(Ⅲ)依题意对恒成立
等价于上恒成立
可得上恒成立,                 10分

                                        11分
,得
列表:





-
0
+




函数的最小值为,              13分
根据题意,.                               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(1)若,求最大值;
(2)已知正数满足.求证:
(3)已知,正数满足.证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若,求的单调区间;
(2)若当,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(Ⅰ)求常数的值;
(Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则  (  ).
A.g(a)<0<f(b)B.f(b)<0<g(a)
C.0<g(a)<f(b)D.f(b)<g(a)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的连续函数,对任意x都有,且其导函数满足,则当时,有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调减区间为     .

查看答案和解析>>

同步练习册答案