精英家教网 > 高中数学 > 题目详情
已知函数>0)
(1)若的一个极值点,求的值;
(2)上是增函数,求a的取值范围
(3)若对任意的总存在成立,求实数m的取值范围
(1); (2); (3)

试题分析:(1)先求函数的导函数,然后由的一个极值点,有求得:,(2),从而可知 ,从而解得 ;(3)先由已知条件由化归与转化思想,对任意的总存在成立转化为对任意的,不等式恒成立,设左边为,然后对函数进行讨论,从而得出的取值范围
试题解析:

由已知,得
                3分


6分
(3)时,由(2)知,上的最大值为
于是问题等价于:对任意的,不等式恒成立 ---8分
,(

时,2ma—1+2m<0,∴g’(a)<0在区间上递减,
此时,
时不可能使恒成立,故必有    10分
 
,可知在区间上递减,
在此区间上,有,与恒成立矛盾,
,这时,上递增,
恒有,满足题设要求,,即
所以,实数的取值范围为                         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若,求的单调区间;
(2)若当,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(Ⅰ)求常数的值;
(Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的连续函数,对任意x都有,且其导函数满足,则当时,有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是    (  )

查看答案和解析>>

同步练习册答案