精英家教网 > 高中数学 > 题目详情
若函数上的导函数为,且不等式恒成立,又常数,满足,则下列不等式一定成立的是        .
;②;③;④.

试题分析:令.,因为,所以,即上是增函数.由,即,所以.所以①成立,③不成立;再令.所以
,因为不能确定是否大于0,所以单调性不能确定,即不知道的大小关系,所以②④不一定成立.因此本题填①.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(Ⅰ)求常数的值;
(Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(1)若.
(2)若函数上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程x3-3x=k有3个不等的实根, 则常数k的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是函数的导函数的图象,对此图象,有如下结论:

①在区间(-2,1)内是增函数;
②在区间(1,3)内是减函数;
③在时,取得极大值;
④在时,取得极小值。
其中正确的是     

查看答案和解析>>

同步练习册答案