精英家教网 > 高中数学 > 题目详情
如图是函数的导函数的图象,对此图象,有如下结论:

①在区间(-2,1)内是增函数;
②在区间(1,3)内是减函数;
③在时,取得极大值;
④在时,取得极小值。
其中正确的是     

试题分析:由 的图象可知,(-3,-),,函数为减函数;所以,①在区间(-2,1)内是增函数;不正确;②在区间(1,3)内是减函数;
不正确;x=2时,=0,且在x=2的两侧导数值先正后负,③在时,取得极大值;而,x=3附近,导函数值为正,所以,④在时,取得极小值。不正确。
故答案为③。
点评:简单题,在某区间,函数的导数非负,函数为增函数,函数的导数非正,函数为减函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若函数上的导函数为,且不等式恒成立,又常数,满足,则下列不等式一定成立的是        .
;②;③;④.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数具有下列特征:,则的图形可以是下图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若,判断函数在定义域内的单调性;
(II)若函数在内存在极值,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 在区间[-2,2]的最大值为20,求它在该区间的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式对任意都成立,则实数a取值范围是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“”的否定是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案