精英家教网 > 高中数学 > 题目详情
若不等式对任意都成立,则实数a取值范围是       

试题分析:显然时,有.

① 当时,对任意上递减,
,此时的最小值为0,不适合题意.
② 当时,对任意,所以,函数在上单调递
减,在递增,所以的最小值为,解得
所以实数的范围是.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查分类讨论的数学思想,正
确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是函数的导函数的图象,对此图象,有如下结论:

①在区间(-2,1)内是增函数;
②在区间(1,3)内是减函数;
③在时,取得极大值;
④在时,取得极小值。
其中正确的是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,设函数
(1)若,求函数上的最小值
(2)判断函数的单调性

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数,给出定义:设是函数的导数,的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”应对对称中心.根据这一发现,则函数的对称中心为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在R上可导,且,则的大小为(  )
A.B.
C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上的最大值是(   )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的一个极值点。
(Ⅰ)求
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

同步练习册答案