精英家教网 > 高中数学 > 题目详情
已知函数。(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围。
(Ⅰ);(Ⅱ)详见解析;(Ⅲ)实数的取值范围为

试题分析:(Ⅰ)函数是函数的一个极值点,先求出其导函数:,利用是函数的一个极值点对应的结论,即时,它的导函数值为零,可令,即可求的值;(Ⅱ)求证:当时,上是增函数,由于含有对数函数,可通过求导来证明,因此利用:,在时,分析出因式中的每一项都大于等于0,即得,从而可证明结论;(Ⅲ)先由(Ⅱ)知,上的最大值为,把问题转化为对任意的,不等式恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数的取值范围为
试题解析:
(Ⅰ)由已知,得
                                                     3分
(Ⅱ)当时, 
时, 又   
上是增函数                                        6分
(Ⅲ)时,由(Ⅱ)知,上的最大值为
于是问题等价于:对任意的,不等式恒成立。


时, 在区间上递减,此时
由于时不可能使恒成立,故必有

,可知在区间上递减,在此区间上,有
,与恒成立相矛盾,故,这时
上递增,恒有,满足题设要求,
    即
实数的取值范围为                                       14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(其中为常数).
(I)当时,求函数的最值;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若,求最大值;
(2)已知正数满足.求证:
(3)已知,正数满足.证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)证明:都有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(1)若.
(2)若函数上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,且为偶函数,当时,有(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是    (  )

查看答案和解析>>

同步练习册答案