(本小题满分15分)已知函数
.
(I) 若
,求曲线
在点
处的切线方程;
若函数
在其定义域内为增函数,求正实数
的取值范围;
(III)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
(I)![]()
(II)![]()
(III)![]()
【解析】⑴当
时,函数
,
.
,(1分)曲线
在点
处的切线的斜率为
.
从而曲线
在点
处的切线方程为
,即
.
⑵
. 令
,
要使
在定义域
内是增函数,只需
在
内恒成立.
由题意
,
的图象为开口向上的抛物线,对称轴方程为
,∴
,只需
,即
时,
∴
在
内为增函数,正实数
的取值范围是
.
⑶∵
在
上是减函数,∴
时,
;
时,
,即
,
① 当
时,
,其图象为开口向下的抛物线,对称轴
在
轴的左侧,且
,所以
在![]()
内是减函数.[来源:][来源:ZXXK]
当
时,
,因为![]()
,所以
,
,此时,
在![]()
内是减函数.故∴当
时,
在
上单调递减
,不合题意;
② 当
时,由
,所以
.[来源:Zxxk.Com]
又由⑵知当
时,
在
上是增函数,
∴
,不合题意;
③ 当
时,由⑵知
在
上是增函数,
,又
在
上是减函数,
故只需
,
,而
,
,即
,解得
综上所述,实数
的取值范围是
.
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com