精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,四边形是菱形,,的中点.

(1)求证:;  (2)求证:平面平面.

 

【答案】

(1)要证明线面平行,则可以根据线面平行的判定定理来证明。

(2)对于面面垂直的证明,要根据已知中的菱形的对角线垂直,以及来加以证明。

【解析】

试题分析:(1)证明:设,连接EO,因为O,E分别是BD,PB的中点,所以  4分

,所以    7分

(2)连接PO,因为,所以,又四边形是菱形,所以  10分

,,,所以   13分

,所以面    14分

考点:线面的垂直和面面垂直

点评:解决的关键是根据线面垂直和面面垂直的判定定理来证明,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=4
3
,AB=2CD=8.
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)当M点位于线段PC什么位置时,PA∥平面MBD?
(Ⅲ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)如图,在四棱锥P-ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.
求:
(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)
(2)四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年全国卷Ⅱ)(12分)

如图,在四棱锥中,

底面为正方形,侧棱底面

分别为的中点.

(1)证明平面

(2)设,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:2014届广东汕头达濠中学高二上期末理科数学试卷(解析版) 题型:解答题

(本小题满分16分)

如图,在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面切于点

(1)求证:PD⊥平面

(2)求直线与平面所成的角的正弦值;

(3)求点到平面的距离.

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省分校高三12月月考理科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图,在四棱锥中,底面是矩形,分别为线段的中点,⊥底面.

(Ⅰ)求证:∥平面

(Ⅱ)求证:平面^平面

(Ⅲ)若,求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案