精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=4
3
,AB=2CD=8.
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)当M点位于线段PC什么位置时,PA∥平面MBD?
(Ⅲ)求四棱锥P-ABCD的体积.
分析:(Ⅰ)设M是PC上的一点,证明平面MBD内的直线BD垂直平面PAD,即可证明平面MBD⊥平面PAD;
(Ⅱ)M点位于线段PC靠近C点的三等分点处,证明PA∥MN,MN?平面MBD,即可证明PA∥平面MBD.
(Ⅲ)过P作PO⊥AD交AD于O,说明PO为四棱锥P-ABCD的高并求出,再求梯形ABCD的面积,然后求四棱锥P-ABCD的体积.
解答:证明:(Ⅰ)在△ABD中,
∵AD=4,BD=4
3
,AB=8,∴AD2+BD2=AB2
∴AD⊥BD.(2分)
又∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD?平面ABCD,
∴BD⊥平面PAD.
又BD?平面MBD,
∴平面MBD⊥平面PAD.(4分)

(Ⅱ)当M点位于线段PC靠近C点的三等分点处时,PA∥平面MBD.(5分)
证明如下:连接AC,交BD于点N,连接MN.
∵AB∥DC,所以四边形ABCD是梯形.
∵AB=2CD,∴CN:NA=1:2.
又∵CM:MP=1:2,
∴CN:NA=CM:MP,∴PA∥MN.(7分)
∵MN?平面MBD,∴PA∥平面MBD.(9分)

(Ⅲ)过P作PO⊥AD交AD于O,
∵平面PAD⊥平面ABCD,
∴PO⊥平面ABCD.
即PO为四棱锥P-ABCD的高.(11分)
又∵△PAD是边长为4的等边三角形,∴PO=
3
2
×4=2
3
.(12分)
在Rt△ADB中,斜边AB边上的高为
4×4
3
8
=2
3
,此即为梯形ABCD的高.
∴梯形ABCD的面积SABCD=
4+8
2
×2
3
=12
3
.(14分)
VP-ABCD=
1
3
×12
3
×2
3
=24
.(15分)
点评:本题考查棱柱的结构特征,平面与平面垂直的判定,考查学生逻辑思维能力,空间想象能力,以及计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案