精英家教网 > 高中数学 > 题目详情
已知b、c是实数,函数f(x)=x2+bx+c对任意α、β∈R有f(sinα)≥0且f(2+cosβ)≤0.
(1)求f(1)的值;
(2)证明:c≥3.
分析:(1)利用正弦、余弦函数的值域,结合对任意α、β∈R有f(sinα)≥0且f(2+cosβ)≤0,即可求f(1)的值;
(2)确定f(3)≤0,代入,即可证明结论.
解答:(1)解:对任意α,β∈R,有-1≤sinα≤1,1≤2+cosβ≤3.
因为f(sinα)≥0且f(2+cosβ)≤0,
所以f(1)≥0且f(1)≤0,
所以,f(1)=0.  …(2分)
(2)证明:因为f(1)=0,所以1+b+c=0,即b=-1-c.
因为1≤2+cosβ≤3,f(2+cosβ)≤0,
所以f(3)≤0.
即32+3b+c≤0,有9+3(-l-c)+c≤0,
所以,c≥3.  …(4分)
点评:本题考查不等式的证明,考查学生分析解决问题的能力,正确利用正弦、余弦函数的值域是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga[(
1
a
-2)x+1]
在区间上[1,3]的函数值大于0恒成立,则实数a的取值范围是(  )
A、(
1
2
,1)
B、(
1
2
3
5
)
C、(1,+∞)
D、(0,
3
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga[(
1
a
-2)x+1]在区间[1,3]上的函数值大于0恒成立,则实数a的取值范围是(  )
A、(1,+∞)
B、(0,
3
5
C、(
1
2
,1)
D、(
1
2
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-2,+∞),部分函数值如下表,f'(x)为f(x)的导函数,f'(x)的图象如图所示.如果实数a满足f(a)<1,则a的取值范围是(  )
x -2 0 4
 f(x) 1 -1 1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

同步练习册答案